
Pratical intruduction to

hash functions and
password cracking

Direct attacks, properties of hash functions, guessing attacks, rainbow tables

Matteo Cavallaro

Types of attack and tools

Direct attack
to service

hydra

Cryptanalyt ic
attack to hash

functions

Dict ionary and
bruteforce

attacks

John the
Ripper

hashcat

Rainbow table
attack

RainCrack Ophcrack

Crunch

 Crunch is a wordlist generator where you can specify a standard character set or a

character set you specify. crunch can generate all possible combinations and

permutations.

 This code can be easily adapted for use in brute-force attacks against network services or
cryptography.

crunch 3 7 abcdef

Crunch – some options

 -d [n][@,%^]: limits the number of

duplicate characters

 -p charset: tells crunch to generate

words that don't have repeating
characters

 -t @,%^: specifies a pattern, eg:
@@god@@@@

 @ will insert lower case characters

 , will insert upper case characters

 % will insert numbers

 ^ will insert symbols

Hydra

 a parallelized login cracker

 supports numerous protocols to attack

 very fast and flexible, new modules are easy to add

 supports: Asterisk, Cisco AAA, Cisco auth, Cisco enable, CVS, FTP(S), HTTP(S)-FORM-GET,
HTTP(S)-FORM-POST, HTTP(S)-GET, HTTP(S)-HEAD, HTTP-Proxy, ICQ, IMAP, IRC, LDAP, MS-SQL,
MySQL, NNTP, Oracle Listener, Oracle SID, PC-Anywhere, PC-NFS, POP3, PostgreSQL, RDP,
Rexec, Rlogin, Rsh, SIP, SMB(NT), SMTP, SMTP Enum, SNMP v1+v2+v3, SOCKS5, SSH (v1 and
v2), SSHKEY, Subversion, Teamspeak (TS2), Telnet, VMware-Auth, VNC and XMPP.

hydra [[[-l LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C FILE]] [-t TASKS] [-x

MIN:MAX:CHARSET] [service://server[:PORT]]

Cryptographic hash function

 It is a mathematical algorithm that maps data of arbitrary size (often called the

"message") to a bit string of a fixed size (the "hash value", "hash", or "message digest") and

is a one-way function, that is, a function which is practically infeasible to invert.

 Ideally, the only way to find a message that produces a given hash is to attempt a brute-
force search of possible inputs to see if they produce a match, or use a rainbow table of

matched hashes.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Bit_string
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Rainbow_table

Cryptographic hash function

 it is deterministic, meaning that the same message always results in the same hash

 it is quick to compute the hash value for any given message

 a small change to a message should change the hash value so extensively that the new
hash value appears uncorrelated with the old hash value (avalanche effect)

https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Avalanche_effect

Resistance
properties

Pre-image resistance

• Given a hash value h it should be difficult to find
any message m such that h = hash(m). This
concept is related to that of a one-way function.

Second pre-image resistance or weak
collision resistance

• Given an input m1, it should be difficult to find a
different input m2 such that hash(m1) = hash(m2).

Collision resistance or strong collision
resistance

• It should be difficult to find two different
messages m1 and m2 such that hash(m1) =
hash(m2).

https://en.wikipedia.org/wiki/One-way_function

Applications

Verifying the integrity
of messages and files

Signature generation
and verification

Password verification Proof-of-work system

Some algorithms

 MD5 was designed by Ronald Rivest in 1991 (RFC 1321). Collisions against MD5 can be
calculated within seconds which makes the algorithm unsuitable for most use cases where a
cryptographic hash is required.

 SHA-1 was developed as part of the U.S. Government's Capstone project. The original
specification – now commonly called SHA-0 – of the algorithm was published in 1993 by NIST. It
was withdrawn by the NSA shortly after publication and was superseded by the revised version,
commonly designated SHA-1.

 Bcrypt (1999)

 Whirlpool (2000)

 SHA-2 is a set of cryptographic hash functions designed by the NSA, first published in 2001.

 SHA-3, released by NIST on August 5, 2015

 BLAKE2 and BLAKE3

https://tools.ietf.org/html/rfc1321
https://en.wikipedia.org/wiki/Capstone_(cryptography)

John the Ripper

 fast password cracker

 available for many flavors of Unix, macOS, Windows, DOS, BeOS

 its primary purpose is to detect weak Unix passwords

 supports also Kerberos/AFS, Windows LM and NTLM, various macOS and Mac OS X user

password hashes, MD5, SHA-1, SHA-256, and SHA-512 and many others

 built-in parallel processing support using OpenMP

Wordlist mode

 Dictionary attack

 Optional word mangling rules (which are used to modify or "mangle" words producing

other likely passwords)

john --wordlist=password.lst [-–rules] mypasswd

"Single crack" mode

 It will use the login names, "GECOS" / "Full Name" fields, and users' home directory names

as candidate passwords, also with a large set of mangling rules applied.

 much faster than wordlist mode

john --single mypasswd

"Incremental" mode

 the most powerful cracking mode

 it can try all possible character combinations as
passwords

 you need a specific definition for the mode's
parameters, including password length limits and
the charset to use

john –incremental=charset mypasswd

 pre-defined incremental modes:

 "ASCII" (all 95 printable ASCII characters)

 "LM_ASCII" (for use on LM hashes)

 "Alnum" (all 62 alphanumeric characters)

 "Alpha" (all 52 letters)

 "LowerNum" (lowercase letters plus digits, for 36
total)

 "UpperNum" (uppercase letters plus digits, for 36
total)

 "LowerSpace" (lowercase letters plus space, for
27 total)

 "Lower" (lowercase letters), "Upper" (uppercase
letters)

 "Digits" (digits only).

hashcat

 World's fastest password cracker

 Open-Source (MIT License)

 Multi-OS (Linux, Windows and macOS)

 Multi-Platform (everything that comes

with an OpenCL runtime)

 200+ Hash-types implemented

https://hashcat.net/hashcat/

Supported

attack modes

 Dictionary attack

 Combinator attack

 Brute-Force attack (subcase of Mask
attack)

 Mask attack

 Hybrid attack

 Rule-based attack

 Toggle-Case attack (subcase of Rule-
based attack)

Dictionary Attack

 The dictionary attack, or “straight mode,” is a very simple attack mode. It is also known as

a “Wordlist attack”.

 All that is needed is to read line by line from a textfile (aka “dictionary” or “wordlist”) and

try each line as a password candidate.

cat dict.txt | hashcat –a 0 hash.txt

Combinator Attack

 Each word of a dictionary is appended to each word in a dictionary.

hashcat -a 1 hash.txt dict1.txt dict2.txt

Mask Attack

 Try all combinations from a given keyspace just like in Brute-Force attack, but more

specific.

hashcat -a 3 hash.txt mask

Mask Attack – charsets

Built-in charsets

 ?l = abcdefghijklmnopqrstuvwxyz

 ?u = ABCDEFGHIJKLMNOPQRSTUVWXYZ

 ?d = 0123456789

 ?h = 0123456789abcdef

 ?H = 0123456789ABCDEF

 ?s = «space»!"#$%&'()*+,-

./:;<=>?@[\]^_`{|}~

 ?a = ?l?u?d?s

 ?b = 0x00 - 0xff

Custom charsets

 --custom-charset1=CS

 --custom-charset2=CS

 --custom-charset3=CS

 --custom-charset4=CS

These command line-parameters have four
analogue shortcuts called

-1, -2, -3 and -4.

Mask Attack – example

command keyspace

-a 3 ?l?l?l?l aaaa – zzzz

-a 3 -4 ?l?d ?4?4?4?4 aaaa – 9999

-a 3 password?d password0 – password9

-a 3 -4 ?l?u ?4?l?l20?d?d aaa2000 – Zzz2099

Hybrid Attack

 Basically, the hybrid attack is just a Combinator attack.
One side is simply a dictionary, the other is the result of
a Brute-Force attack. In other words, the full Brute-Force
keyspace is either appended or prepended to each of
the words from the dictionary. That's why it's called
“hybrid”.

hashcat -a 6 example.dict ?d?d?d?d

hashcat -a 7 ?d?d?d?d example.dict

password0000

password0001

password0002

.

.

password9999

hello0000

hello0001

hello0002

.

.

hello9999

0000password

0001password

0002password

.

.

9999password

0000hello

0001hello

0002hello

.

.

9999hello

https://hashcat.net/wiki/doku.php?id=combinator_attack
https://hashcat.net/wiki/doku.php?id=brute_force_attack

Rule-
based
Attack

one of the most complicated of all the
attack modes

like a programming language designed for
password candidate generation

has functions to modify, cut or extend words
and has conditional operators to skip some,
etc.

the most flexible, accurate and efficient
attack.

Why re-invent the wheel? Regular
expressions are too slow.

Rainbow table

 A rainbow table is a precomputed table for
reversing cryptographic hash functions.

 It is a practical example of a space–time tradeoff,
using less computer processing time and more
storage than a brute-force attack which calculates
a hash on every attempt, but more processing time
and less storage than a simple lookup table with one
entry per hash.

 introduced by Philippe Oechslin in a 2003 research
paper

 ineffective against one-way hashes that include
large salts

 saltedhash(password) = hash(password || salt)

https://en.wikipedia.org/wiki/Precomputed
https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Lookup_table

How chains

work

RainbowCrack

is a general propose implementation
of Philippe Oechslin's faster time-
memory trade-off technique

runs on Windows (with GPU
acceleration support) and Linux

supports LM hash, NTLM hash, MD5,
SHA-1, SHA-256

extensible with plugins

Table generation

rtgen hash_algorithm charset plaintext_len_min plaintext_len_max

table_index chain_len chain_num part_index

 table_index: selects the reduction function

 chain_len: the rainbow chain length. Longer rainbow chain stores more plaintexts

and requires longer time to generate.

 chain_num: number of rainbow chains to generate

Last steps: rtsort, rtmerge, rt2rtc

rcrack

Basic usage

 rcrack[_cuda | _cl] <table directory> -h <hash> | -l <hash list file>

There are also

 rcrack_gui, rcrack_cuda_gui, rcrack_cl_gui

Ophcrack

Free and open source
(GPL license)

Multi-OS (Windows, Linux/Unix,
Mac OS X)

Cracks LM and NTLM hashes

Real-time graphs to analyze the
passwords

Developed by Philippe Oechslin
(and others)

https://en.wikipedia.org/wiki/GNU_General_Public_License

Example table for LM hashes

 alfanumeric charset

 99.95% success rate

 size of 388MB

 average number of hash operations: 15.3 million

 maximum number of hash operations: 297 million

